高保真大满贯系统的开发过程取决于它们对可靠数据集的验证。为了实现这一目标,我们提出了IBiscape,这是一种模拟基准,其中包括来自异质传感器的数据同步和获取API:立体声 - RGB/DVS,深度,IMU和GPS,以及地面真相场景场景细分和车辆自我摄入量。我们的基准是建立在卡拉模拟器上的,后端是虚幻的引擎,呈现出模拟现实世界的高动态风景。此外,我们提供34个适用于自动驾驶汽车导航的多模式数据集,包括用于场景理解等情况,例如事故等,以及基于与API集成的动态天气模拟类别的广泛框架质量。我们还将第一个校准目标引入了Carla图,以解决CARLA模拟DVS和RGB摄像机的未知失真参数问题。最后,使用IBISCAPE序列,我们评估了四个ORB-SLAM 3系统(单眼RGB,立体RGB,立体声视觉惯性(SVI)和RGB-D)的性能和玄武岩视觉惯性轴测计(VIO)系统,这些系统在模拟的大型大型序列上收集的各种序列 - 规模动态环境。关键字:基准,多模式,数据集,探针,校准,DVS,SLAM
translated by 谷歌翻译
近年来,多个对象跟踪引起了研究人员的极大兴趣,它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小物体检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的注意力机制,与田径的相互关系,与田径的相互关系,图形卷积神经网络,与暹罗网络不同帧中对象的外观相似性,他们还尝试了基于IOU匹配的CNN网络,使用LSTM的运动预测。为了将这些零散的技术在雨伞下采用,我们研究了过去三年发表的一百多篇论文,并试图提取近代研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。
translated by 谷歌翻译
偏光成像以及深度学习,在包括场景分析在内的不同任务上显示了改进的性能。但是,由于培训数据集的尺寸很小,因此可能会质疑其稳健性。尽管该问题可以通过数据增强来解决,但两极分化的方式受到经典数据增强技术未解决的身体可行性约束。为了解决这个问题,我们建议使用Cyclegan,这是一种基于深层生成模型的图像翻译技术,仅依靠未配对的数据,将大型标记的路现场数据集传输到极化域。我们设计了几个辅助损失项,与自行车损失一起处理极化图像的物理约束。在道路场景对象检测任务上证明了该解决方案的效率,在该任务中,生成的逼真的极化图像允许改善汽车的性能和行人检测高达9%。由此产生的约束周期内公开释放,使任何人都可以生成自己的极化图像。
translated by 谷歌翻译
背景:越来越多地认识到,仅根据常规临床护理得出的完全包容的大规模收集,脑部肿瘤的复杂异质性越来越多。这是当代机器学习可以促进的一项任务,尤其是在神经影像方面,但是它处理在现实世界中临床实践中常见的不完整数据的能力仍然未知。在这里,我们将最新方法应用于大规模的多站点MRI数据,以量化自动化肿瘤分割模型的比较保真度,以复制在临床现实中观察到的各种完整性水平。方法:我们将深度学习(NNU-NET衍生的)肿瘤分割模型与T1,对比增强的T1,T2和Flair Imaging序列的所有可能组合进行了比较,并在2021 Brats-brats-- RSNA胶质瘤人群为1251名患者,并对多样化的50例患者样本进行了测试。结果:经过训练的不完整数据分割病变的模型,通常等效于对完整数据培训的模型,表现为0.907(单个序列)至0.945(完整数据集)的骰子系数(全数据集),而0.701(单个序列)(单个序列)至0.891(完整的数据集中) )用于组件组织类型。不完整的数据分割模型可以在没有对比成像的情况下准确检测增强肿瘤,从而用R2在0.95-0.97之间量化其体积。结论:深度学习分割模型在缺少数据时很好地表征了肿瘤,甚至可以在不使用对比度的情况下检测增强组织。这表明转化为临床实践(不完整的数据是常见的,可能比迄今为止认为的要容易得多,并且在减少对比鲜明使用的依赖性方面可能具有价值。
translated by 谷歌翻译
我们描述了NordiaChange:挪威的第一个历史语义改变数据集。NordiaChange包括两个新的子集,覆盖了大约80个挪威名词,随着时间的推移,用分级语义变化手动注释。两个数据集都遵循相同的注释程序,可以互换地作为火车和彼此的测试分割。Nordiachange涵盖与战后事件,挪威石油和天然气发现以及技术发展有关的时间段。注释是使用DUREL框架和两个大型历史挪威语料库完成的。NordiaChange在允许许可证下全额发布,完成了原始注释数据和推断仪式单词使用图(DWUG)。
translated by 谷歌翻译
伪标签的使用占上处,以解决无监督的域自适应(UDA)重新识别(RE-ID),具有最佳性能。事实上,这家族的方法已经上升到几个有效的UDA重新ID特定框架。在这些作品中,改善伪标签UDA重新ID性能的研究方向多样化,主要基于直觉和实验:炼制伪标签,减少伪标签中的错误的影响......它可能很难推断出来它们是一般的良好做法,可以以任何伪标记方法实施,以始终如一地提高其性能。为了解决这一关键问题,提出了一个关于伪标签UDA RE-ID的新的理论视图。这些贡献是三倍:(i)伪标签UDA重新ID的新理论框架,通过UDA重新ID性能的新一般学习上限,正式化。 (ii)伪标签的一般良好做法,直接推导出拟议的理论框架的解释,以改善目标重新ID表现。 (iii)关于具有挑战性的人和车辆交叉数据集重新ID任务的广泛实验,对各种最先进的方法和各种建议的良好实践实现显示了一致的性能改进。
translated by 谷歌翻译
未经监督的域适应(UDA)用于重新识别(RE-ID)是一个具有挑战性的任务:避免昂贵的附加数据的注释,它旨在将知识从域转移到仅具有未标记数据的域的带注释数据。已证明伪标签方法已对UDA重新ID有效。然而,这些方法的有效性大量取决于通过聚类影响影响伪标签的一些超参数(HP)的选择。兴趣领域缺乏注释使得这一选择是非微不足道的。目前的方法只需重复使用所有适应任务的相同的经验值,并且无论通过伪标记培训阶段都会改变的目标数据表示。由于这种简单的选择可能会限制其性能,我们的目标是解决这个问题。我们提出了对聚类UDA RE-ID进行培训选择的新理论基础以及伪标签UDA聚类的自动和循环HP调谐方法:丘比巴。 Hyprass在伪标记方法中包含两个模块:(i)基于标记源验证集的HP选择和(ii)特征歧视的条件域对齐,以改善基于源样本的HP选择。关于常用的人员重新ID和车辆重新ID数据集的实验表明,与常用的经验HP设置相比,我们所提出的次数始终如一地提高RE-ID中最先进的方法。
translated by 谷歌翻译